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Abstract 

In this paper, study adaptive control and synchronization of barotropic model. 
First, study the stability of equilibrium point of barotropic model. Then control  
the chaotic behavior of barotropic model to its equilibrium point using adaptive 
control method. Finally, study chaos synchronization of barotropic model using 
adaptive control method. 

1. Introduction 

Chaos in control systems and controlling chaos in dynamical systems 
have both attracted increasing attention in recent years. A chaotic system 
has complex dynamical behaviors that posses some special features, such 
as being extremely sensitive to tiny variations of initial conditions, having 
bounded trajectories in the phase space. Controlling chaos has focused on 
the nonlinear systems such as a barotropic model. Non-divergent 
barotropic model is 
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where v/  is the streamfunction, ( )vvJ /∇/ 2,  is the Jacobian, β  is the beta 
parameter. 

2. Adaptive Control Chaos of Barotropic Model 

Feedback control method is applied to achieve this goal. Consider the 
controlled system of (1), which has the form 
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where u is external control input, which will drag the chaotic trajectory 

v/∇2  of the barotropic model to equilibrium point ,2vE /∇=  which is the 
steady states .0E  

In this case, the control law is 

( ),22 vvgu /∇−/∇−=  

where g (estimate of ,∗g  respectively) is updated according to the 
following adaptive algorithm. 

( ) ,222 vvg /∇−/∇µ=&  

where µ  is adaption gains. Then, the controlled system (2) has following 
form 
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Theorem 2.1. For ,∗< gg  the equilibrium point vE /∇= 2  of the 
system (3) is asymptotically stable. 

Proof. Let us consider the Lyapunov function 
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The time derivative of V in the neighbourhood vE /∇= 2  of the system (3) 
is 

( ) ( ) .1222 gggvvvV && & ∗−
µ

+/∇/∇−/∇=  (4) 

By substituting (3) in (4), 

( ) ( ) ( ) ( )( ) ., 22222222 vvggvvgx
vvvJvvV /∇−/∇−+


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∂
/∂β−/∇/−/∇−/∇= ∗&  

Let ( ),22 vv /∇−/∇=η  since v/∇2  is an equilibrium point of the 

uncontrolled system (1), V&  becomes 

( ) ( ) ., 222 η−+η−
∂
/∂ηβ−/∇/η−= ∗gggx
vvvJV&  

It is clear that for positive parameters ,,, µβJ  if we choose ,∗< gg  then 

V&  is negative semidefinite. Since, V is positive definite and V&  is 

negative semidefinite, ., ∞∈η Lg  From ( ) ,0≤tV&  we can easily show 
that the square of η  are integrable with respect to t, namely, .2L∈η  

From (3), for any initial conditions, we have .∞∈η L&  By the well-known 
Barbalat’s lemma, we conclude that 0→η  as .+∞→t  Therefore, the 

equilibrium point vE /∇= 2  of the system (3) is asymptotically stable. 

3. Adaptive Synchronization of the Barotropic Model 

Consider two nonlinear systems 

( ),, xtfx =&  (5) 

( ) ( ),,,, yxtuytgy +=&  (6) 

where [ ] [ ],,,,,,, nnnrnnrn RRRRCuRRRCgfRyx ××∈×∈∈ ++  
+≥ Rr ,1  is the set of non-negative real numbers. Assume that (5) is the 

drive system, (6) is the response system, and ( )yxtu ,,  is the control 
vector. 
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In this section, we consider adaptive synchronization barotropic 
model. This approach can synchronize the chaotic systems, when the 
parameters of the drive system are fully unknown and different with 
those of the response system. Assume that there are two barotropic 
model, such that the drive system is to control the response system. The 
drive and response system are given, respectively, by 
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where the parameter β,J  are unknown or uncertain, and 
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where 11, βJ  are parameters of the response system, which need to be 

estimated, and [ ]Tuu 1=  is the controller, we introduced in (8). We 
choose 

,211 veku
/∇

=  (9) 

where ve
/∇2  are the error states, which are defined as follows 

.1
2

2
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2 vve v /∇−/∇=
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 (10) 

Theorem. Let 1u  be the control and 1k  can be chosen so that the 
following inequalities holds, 

.01 >= kP  (11) 

Then the two barotropic models (7) and (8) can be synchronized under the 
adaptive controls (9). 

Proof. It is easy to see from (7) and (8), that the error system is 
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Let ., 11 β−β=−= βeJJeJ  Choose the Lyapunov function as follows 
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Then, the differentiation of V along trajectories of (12) is 
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where [ ]Tvee
/∇

= 2  and P is as in (11). Since, ( )tV  is positive definite and 

( )tV&  is negative semidefinite, it follows that .,,2 ∞/∇
∈β LJe v  From ( )tV&  

,PeeT−≤  we can easily show that the square of ve
/∇2  are integrable with 

respect to t, namely, .22 Le v ∈
/∇

 From (12), for any initial conditions, we 

have .2 ∞/∇
∈ Le v

&  By the well-known Barbalat’s lemma, we conclude that 

02 →
/∇ ve  as .+∞→t  Therefore, in the closed-loop system, ( )tv2

2 /∇  

( )tv1
2 /∇→  as .+∞→t  This implies that the two barotropic model have 

synchronized under the adaptive controls (9). 
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4. Conclusions 

In this paper, we first give sufficient conditions of parameters that 
make equilibrium point of the barotropic model (1) using adaptive control 
to be asymptotically stable. Finally, we give sufficient conditions of 
parameters that make equilibrium point of synchronization of the 
barotropic model using adaptive control to be asymptotically stable. 
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